GPJOULE TRUST YOUR ENERGY.

MACHBARKEITSSTUDIE Erneuerbare Stromversorgung

Donauwörth

20.06.2024

Ausgangssituation
Pfade zur Klimaneutralität
Status Quo
Strombedarfsprognose

Konzeptentwicklung

Technologieübersicht

Varianten

Zusammenfassung

3

Zielpfad 2040 Energie- und THG-Bilanzen Handlungsempfehlungen

Technologieübersicht

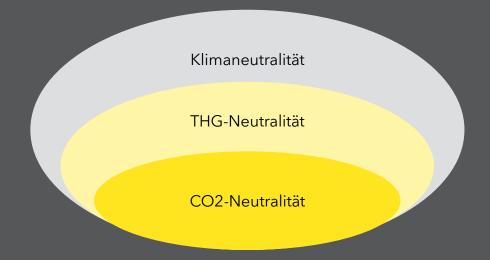
Varianten

Zusammenfassung

Zielpfad 2040
Energie- und THG-Bilanzen
Handlungsempfehlungen

1. Ausgangssituation: Pfade zur Klimaneutralität

Entwicklung von Pfaden zur Klima- bzw. THG-Neutralität im Rahmen von verschiedenen, wissenschaftlichen **Leitstudien**:


- Klimaneutrales Deutschland 2045
- Ariadne-Projekte: Szenarien & Pfade
- Langfristszenarien: THG-Neutralität 2045

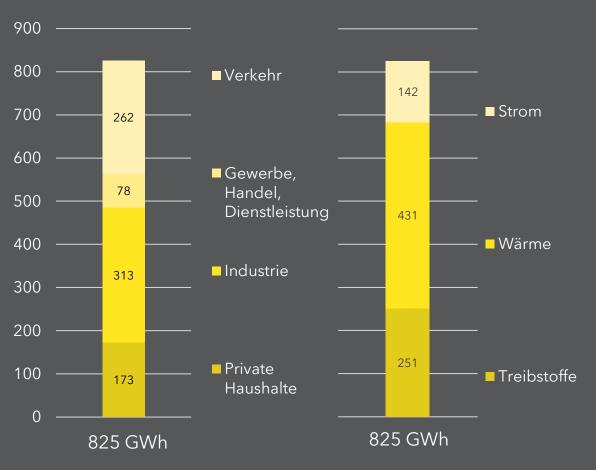
Vergleich von Szenarien mit den folgenden Schwerpunkten und ihren spezifischen Entwicklungen:

- Elektrifizierung
- Wasserstoff
- Synthetische Kraftstoffe

Fazit: Präferenz für Szenario "Elektrifizierung"

- 1. Geringerer Endenergieverbrauch
- 2. Schnellere Reduktion der THG-Emissionen
- 3. Kostenoptimum durch zügigen EE-Ausbau (Wind + PV)
 - 4. Resilienz durch hohe Energieproduktion
 - 5. Geringere Abhängigkeit von Energieimporten

Netto-Neutralität, inklusive weiterer klimawirksamer Effekte (z.B. Albedo-Effekt)


Netto-Neutralität von THG-Emissionen und -Senken

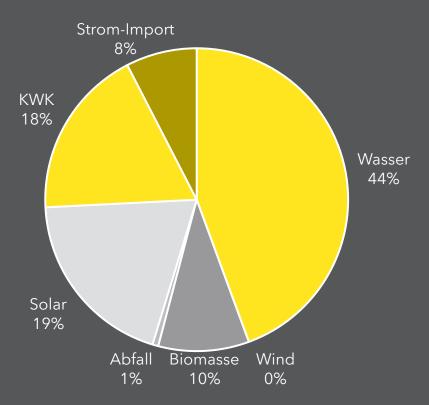
Netto-Neutralität von CO2-Emissionen und -Senken

Status Quo - Endenergieverbrauch 2019

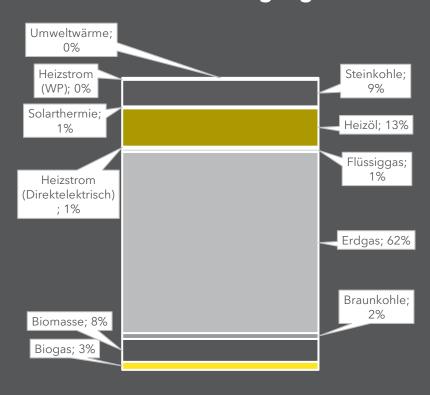
Endenergieverbauch [GWh]

Sektoren

- Sektoren **Industrie** und **Verkehr** sind mit jeweils über 30% des Endenergieverbrauchs die dominanten Energieverbraucher
- Sektor Private Haushalte mit 21% weiterhin signifikant


Energieform

- Wärme ist signifikanter Anteil am Endenergieverbrauch in den Sektoren:
 - Private Haushalte: 86% (14% Strom)
 - Industrie: 72% (28% Strom)
 - GHD: 79% (21% Strom)
- Im Sektor Verkehr dominieren **fossile Treibstoffe** mit 91% den Endenergieverbrauch


Status Quo - Endenergieverbrauch 2019

Stromerzeugung

Die Stromerzeugung (132 GWh) ist dominiert von **erneuerbaren Energieträgern**.

Wärmeerzeugung

Die Wärmeerzeugung (435 GWh) basiert zu 87% auf fossilen Energieträgern.

Status Quo - Energieträger und Kosten

*Ableitung aus Bilanz

Energieträger	Anteil 2019	Preis	Bewertung
Erdgas	33%	4,4 ct/kWh*	Status Quo: 12 ct/kWh in 2024 (Marktpreis)
Kraftstoffe	30%	13,5 ct/kWh*	Status Quo: 17-20 ct/kWh (Marktpreis)
Strom	17%	18,1 ct/kWh*	Verweis: Stromkosten in "Konzept"
Heizöl	7%	6,5 ct/kWh*	Status Quo: 10 ct/kWh in 2024 (Marktpreis)
Wasserstoff	+	unsicher	Verfügbarkeit und Konditionen unsicher
E-Fuels	+	Unsicher	Verfügbarkeit und Konditionen unsicher
EU-ETS	-	24,7 €/t CO2e	Zertifikatpreis steigt bis 2040 voraussichtlich auf 160€/t CO2e und verteuert fossile Brennstoffe. ETS II ab 2027 (Gebäude und Verkehr).

In 2019 besteht eine signifikante **Abhängigkeit von fossilen Energieträgern**, die voraussichtlich in Zukunft weitere Preissteigerungen erfahren werden (siehe BMWK) und eine starke Importabhängigkeit manifestieren.

In Zukunft sollten lokale, **erneuerbare Energieträger** priorisiert werden, um die **Resilienz** und **lokale Wertschöpfung** zu fördern.

1. Ausgangssituation: Energiebedarfsprognose - Sektor Strom

Beschreibung

Stromverbrauch für mechanische Energie, Beleuchtung, IKT (nicht für Wärme)

Annahme

- Private Haushalte:
 - Anstieg der Haushaltsanzahl, Durchsetzung von Effizienz-Technologien
- Industrie und GHD: Anstieg der Bruttowertschöpfung, Investitionen in Effizienz-Technologien, Elektrifizierung

Prognose

Strom [GWh]	2019	2030	2040	2019-2030	2019-2040
Private Haushalte	24	22	19	-8%	-20%
Industrie	87	83	81	-5%	-8%
Gewerbe, Handel, Dienstleitung	17	16	16	-3%	-5%
Gesamt	128	122	116	-5%	-10%

Energiebedarfsprognose - Sektor Wärme I

Beschreibung

Energieverbrauch für die Bereitstellung von Gebäudewärme und Prozesswärme.

Annahme

COP:

Konservativer COP von durchschnittlich 2

- Gebäudewärme:
 - Steigerung der Sanierungsraten und -tiefen (1,5 2% p.a. bis 2030) sowie Substitution fossiler Energieträger durch Wärmepumpe und Fernwärme
- Prozesswärme:
 - Steigerung der Bruttowertschöpfung und Effizienzeffekte durch Substitution der fossilen Energieträger (Elektrifizierung)
- Fernwärme

Anteile	2030	2040
Methan	5%	0%
Biomasse	5%	0%
Heizstrom	30%	33%
Umweltwärme	60%	67%

Exkurs: Wasserstoff

- 1. Priorisierung Verwendung von Wasserstoff für Prozesse, die komplex zu dekarbonisieren sind (Stahl-, Chemie-, Zementindustrie).
- 2. Gebäudewärme
 Das niedrige Temperaturniveau
 (<100°C) ermöglicht eine
 effizientere Versorgung mit
 Fernwärme und Wärmepumpen.
- 3. Prozesswärme
 Die vorhandene Industrie kann
 ihren Bedarf an Prozesswärme und
 -dampf effizient und
 kostengünstiger durch direkte
 Elektrifizierung sichern.

Energiebedarfsprognose - Sektor Wärme II

Prognose

Wärme [GWh]	2019	2030	2040	2019-2030	2019-2040
Heizstrom	4	18	35	+408%	+881%
Sonstige Wärme	145	112	71	-23%	-51%
Private Haushalte	149	130	106	-13%	-29%
Wärme [GWh]	2019	2030	2040	2019-2030	2019-2040
Heizstrom	0	45	96	-	-
Sonstige Wärme	225	165	89	-27%	-60%
Industrie	225	210	185	-7%	-18%
Wärme [GWh]	2019	2030	2040	2019-2030	2019-2040
Heizstrom	0	8	15	-) -	-
Sonstige Wärme	61	46	29	-25%	-53%
GHD	61	53	44	-13%	-29%

*Heizstrom entspricht Energieverbrauch für:

- Wärmepumpen
- Heizstäbe
- Elektrifizierung in Fernwärme

Sonstige Wärme

In 2019 setzt sich die sonstige Wärme vor allem aus fossilen Energieträgern (Gas, Heizöl, Kohle) zusammen. In den Szenarien-Jahren wird eine schnelle Dekarbonisierung angenommen und in 2040 wird Umgebungswärme und ein geringer Anteil Biomasse verwendet.

Energiebedarfsprognose - Sektor Verkehr

Beschreibung

Energieträgerverbrauch für die Versorgung der Antriebstechnologien

Annahme

- Verkehrsleistung:
 Rückgang der Personenverkehrsleistung (-2%), Anstieg der Güterverkehrsleistung (+30%)
- Substitution: Elektrifizierung der PKW, E-Fuels/H₂ für Teile des Güterverkehrs
- Mobilitätsverhalten:
 Steigerung der Anteile von ÖPNV, Fahrrad und Fußweg am Modal Split

Prognose

Energieträger [GWh]	2019	2030	2040	2019-2030	2019-2040
(Bio-) Benzin	77	45	9	-42%	-88%
(Bio-) Diesel	172	93	11	-46%	-94%
Methan	2	2	(0%	-100%
Strom	10	50	85	+390%	+739%
E-Fuel / H ₂	0	15	5	-	-
Gesamt	262	205	110	-22%	-58%

Exkurs: Wasserstoff + E-Fuels

1. Effizienz

Die direkte Elektrifizierung vom Verkehr bedarf weniger Endenergie als der Szenario-Pfad über die Produktion von synthetischen Kraftstoffen.

2. Kosten Ein PKW, der mit synthetischen Kraftstoffen betrieben wird kostet aktuell pro 100km mehr als doppelt so viel wie ein E-Auto.

> THG-Neutralität aufgrund von Durchgangsverkehr und deutschen Klimazielen nicht realistisch

1. Ausgangssituation: Strombedarfsprognose

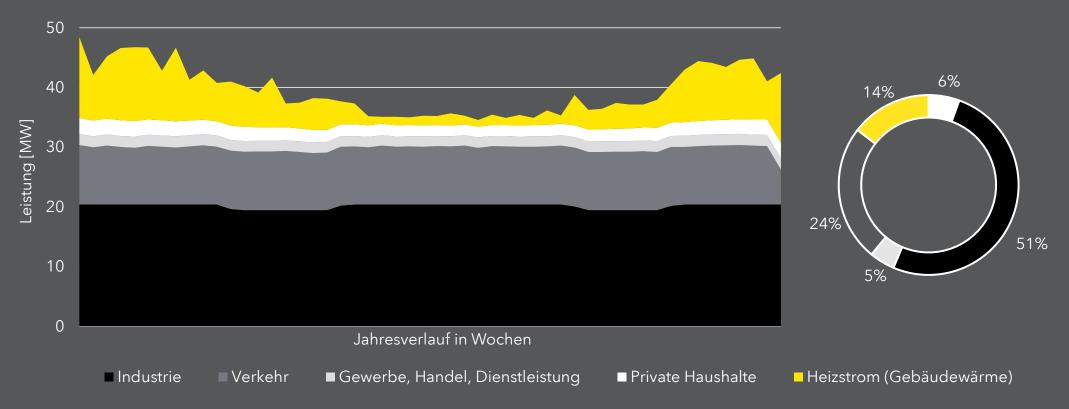
Strom [GWh]	2019	2030		2040	2019-2030	2019-2040
Private Haushalte	2	.8	41	55	+46%	+97%
Industrie	8	8	129	177	+47%	+101%
Gewerbe, Handel, Dienstleistung	1	7	24	31	+44%	+85%
Verkehr	1	0	50	85	+390%	+739%
Gesamt	142	243		347	+71%	+144%
(davon Heizstrom)	(4)	(71)		(146)	-	-

Entwicklung der Strommenge bis 2040

- Reduktion: Effizienz-Technologie für Mechanische Energie, Beleuchtung und IKT
- Anstieg: Elektrifizierung von Gebäude- und Prozesswärme
- Fazit: **Strombedarf steigt um 144%** an und entspricht mit **347 GWh** rund 250% des Bedarfs von 2019

Bewertung der Stromerzeugung für 2040

- **85 GWh** des Strombedarfs werden bereits durch erneuerbare Energieträger gedeckt (Wasserkraft, Solar & Abfall) Biomasse nicht berücksichtigt
- **38 GWh** Strom könnten durch Dachanlagen erzeugt werden


2040 werden **224 GWh EE-Strom** zusätzlich benötigt

1. Ausgangssituation: Strombedarfsprognose

Entwicklung der Lastkurve

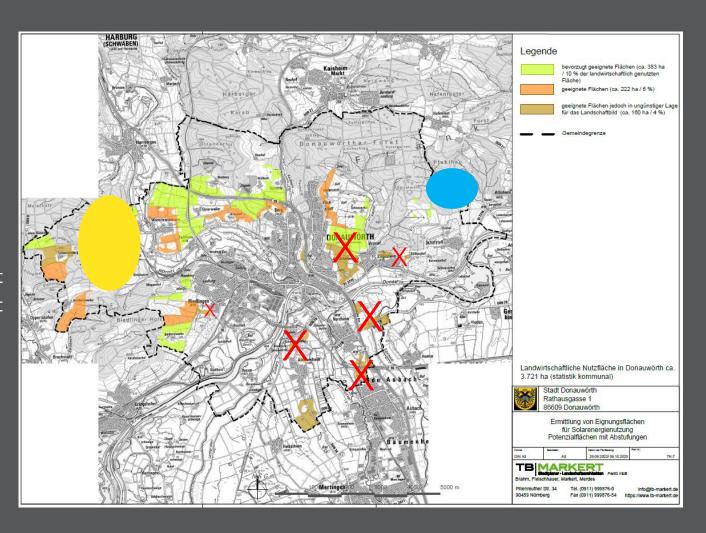
Durch die Verwendung von Strom für die Erzeugung von Gebäude- und Prozesswärme wird Strom in 2040 zu anderen Zeiten abgerufen, dies führt zu einer **Veränderung des Lastprofils**

Status Quo - Geografische Rahmenbedingungen

Gemeindefläche

- 7.700 ha

Landwirtschaftliche Nutzungsfläche


- 3.691 ha

Potentialgebiet-PV

- 855 ha geeignete Fläche unter Berücksichtigung von Topographie
- 383 ha bevorzugte Eignungsfläche mit geringem Konfliktpotential identifiziert (grün)
- 222 ha geeignete Flächen (orange)

Potentialgebiet-Wind

- 150 ha geeignetes Gebiet für Errichtung von Windkraftanlagen (gelb) - Leitbild
- Weiteres Potentialgebiet (blau) GP JOULE Projects

Status Quo - Wirtschaftliche Rahmenbedingungen

Solarpaket I (EEG-Novelle):

Aufnahme der gemeinschaftlichen Gebäudeversorung als Schritt zum Energy-Sharing sowie Reduktion der bürokratischen Anforderung für Mieterstrommodelle

Gute Voraussetzung zur Ausschöpfung von Dachanlagen-Potential

Benachteiligte Gebiete (landwirtschaftliche ertragsarme Flächen) sind grundsätzlich für den Bau von Freiflächen-PV zugelassen. Durch die "Opt-Out"-Regelung kann die Nutzung jedoch begrenzt werden (Mechanismus vorher genau andersrum)

 Allgemeine Vereinfachung der Planung von PV-Projekten (auch durch "naturschutzfachliche Mindestkriterien")

WindBG - Windenergieflächenbedarfsgesetz:

In jedem Bundesland ist ein prozentualer Anteil der Landesfläche nach Maßgabe der Anlage (Flächenbeitragswert) für die Windenergie an Land auszuweisen.

Flächenbeitragswert in Bayern:

- -1,1% bis 2027
- 1,8% bis 2032

Pfade 2

Ausgangssituation

Pfade zur Klimaneutralität

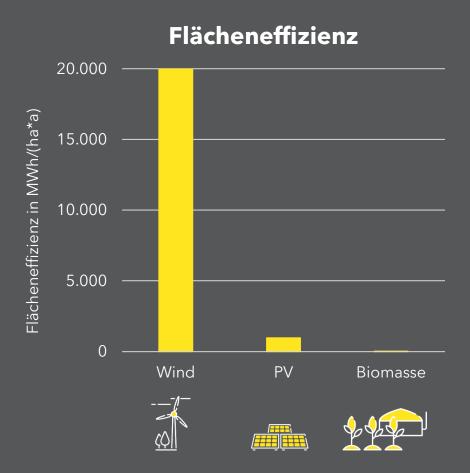
Status Quo

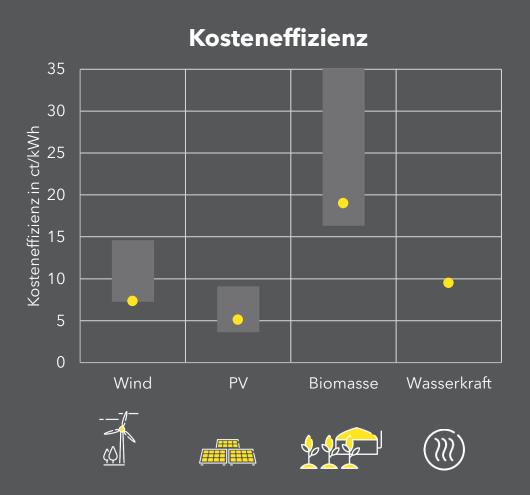
Strombedarfsprognose

Konzeptentwicklung

Technologieübersicht

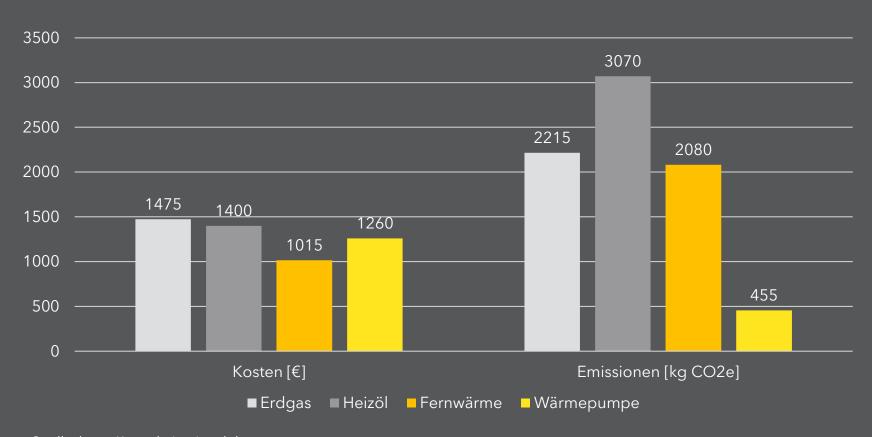
Varianten


Zusammenfassung


3

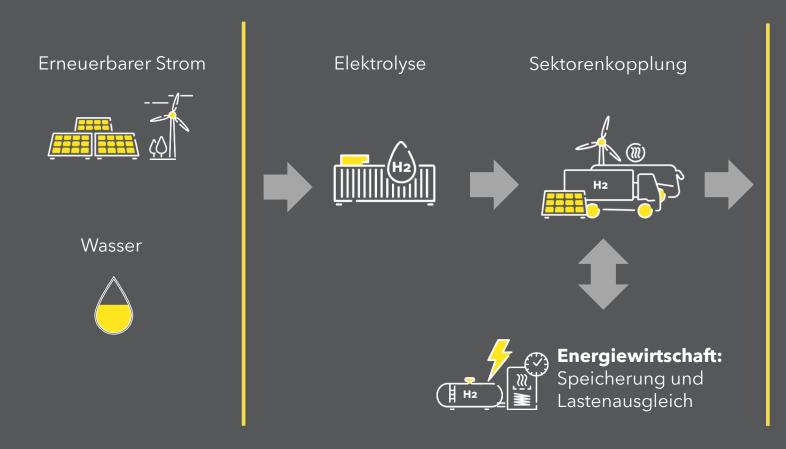
Zielpfad 2040
Energie- und THG-Bilanzen
Handlungsempfehlungen

2. Konzeptentwicklung: Technologieübersicht - Strom

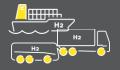


2. Konzeptentwicklung: Technologieübersicht - Wärme

Vergleich von Heizkosten und Emissionen für die Gebäudewärme einer Wohnung (70qm)


*Die Fernwärme wird zukünftig durch CO2-arme bzw. CO2-neutrale Energieträger erzeugt und hat somit das Potential von sehr geringen Emissionen für die Wärmeversorgung.

** Die Emissionen der Wärmepumpe basieren auf dem Emissionsfaktor für Strom, welcher zügig dekarbonisiert werden soll.


Quelle: https://www.heizspiegel.de

Exkurs: Wasserstoff ist zentraler Energieträger der Energiewende

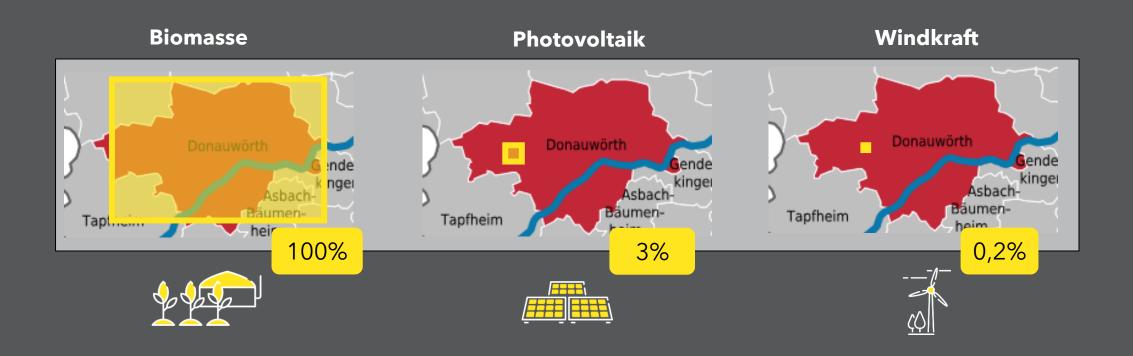
Potenzielle Anwendungsbereiche in Donauwörth

Mobilität: Schwerlastverkehr ohne CO₂ Emissionen

Industrie: Dekarbonisierung von

nicht elektrifizierbaren Prozessen & Einsatz als

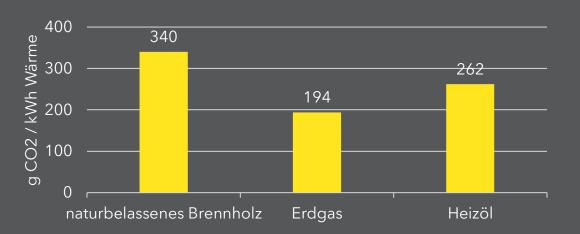
grüner Rohstoff

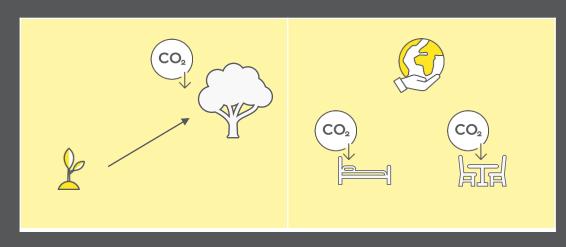

Wärme:

Abwärmenutzung

- Industrie- und Mobilitätskonzept ermöglicht Quantifizierung des Potenzials in Donauwörth in den aufgeführten Anwendungsbereichen
- > Sektorkopplung zum Wärmesektor durch Abwärmeauskopplung aus der Elektrolyse möglich
- → Elektrifizierbare Prozesse (z.B. PKW-Verkehr, Heizungssysteme) werden aus effizienzgründen und dem ungewissen Ausbau des Wasserstoff-Kernnetzes nicht für Wasserstoff-Anwendungen empfohlen

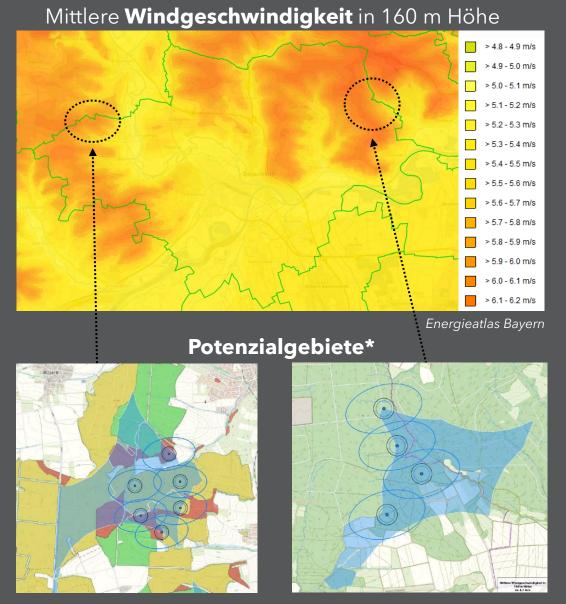
2. Konzeptentwicklung: Klima- und Umweltbilanz von Bioenergie




- Strombedarfsprognose für Donauwörth für 2040: **347 GWh/a** \rightarrow Bedarf an zusätzlichem EE-Strom: **224 GWh/a**
- Bei Biomasse ist die gleichzeitige Wärmebereitstellung berücksichtigt
- Quadrate: Flächenbedarf, um mit dem jeweiligen Energiepfad diese **Strommenge** bereitzustellen
- Prozentangaben: Anteil der benötigten Fläche Donauwörths zur Deckung dieser Strommenge

Klima- und Umweltbilanz von Bioenergie

- Bei der Verbrennung von Brennholz entstehen rund doppelt so viel CO₂-Emissionen wie bei Erdgas
- Das CO₂ wird zwar im Wachstumszyklus eines neuen Baumes wieder aus der Atmosphäre gezogen, dies dauert aber bis zu 50 Jahre
 - Voraussetzung: Nachhaltige Forstwirtschaft
- Bessere Verwendung für Holz: Langfristige Speicherung des gebundenen Kohlenstoffs in langlebigen
 Produkten wie Möbeln/Häusern, sofern möglich
- Potential vom Stadtwald Donauwörth
 - Fläche: 916,9 ha
 - Jährliche Zuwachsrate: 5,5 Festmeter / ha
 - Heizwert: 2.300 kWh / Festmeter
 - \rightarrow ~ 11,5 GWh Heizleistung / a
 - → ~ 3% des Heizbedarfs in 2040

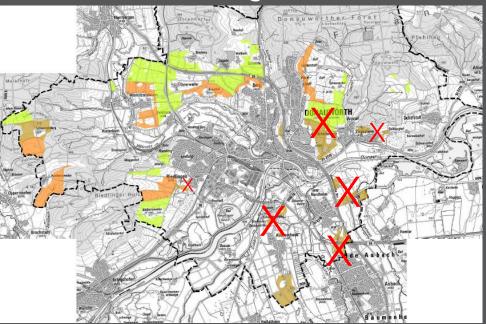


2. Konzeptentwicklung: Windkraft

- Potenzialgebiete*: **bis zu 10 Windkraftanlagen** → davon **7** WKA im
 Gemeindegebiet Donauwörth
- Mittlere Windgeschwindigkeit in den Potenzialgebieten: ~ 5,3 bis 6,25 m/s
- Potenzieller Ertrag pro Windkraftanlage in den Potenzialgebieten: ~ 12 bis 14 GWh/a

Windpotenzial in den Potenzialgebieten				
Leistung	~ 72 MW			
Ertrag	~ 120 bis 140 GWh			

Das Windpotenzial reicht voraussichtlich **nicht** aus, um den **gesamten zusätzlichen EE-Strombedarf**Donauwörths 2040 mit **224 GWh** zu decken


2. Konzeptentwicklung: Photovoltaik

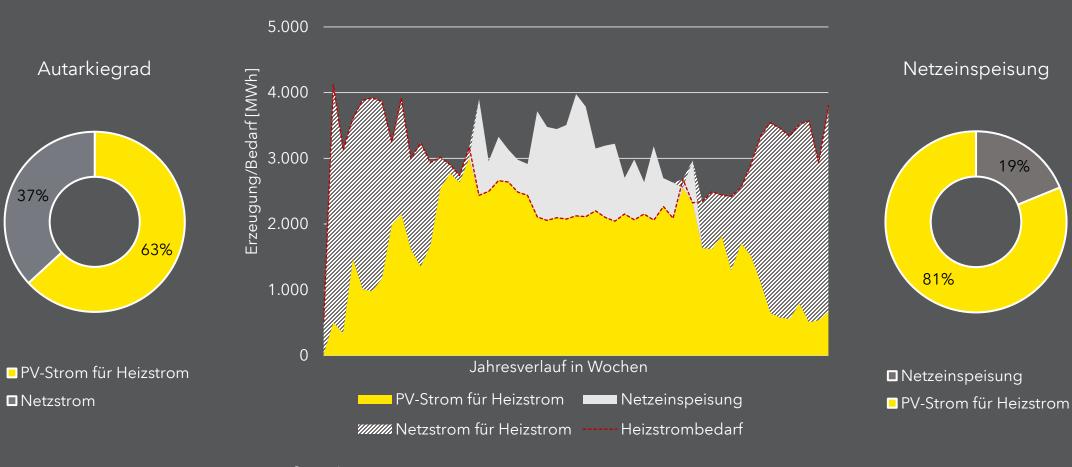
- Potenzialgebiete*: ~625 ha
 - → Ergebnis des Solargutachtens und den gem. Leitbild ausgeschlossenen Flächen
- Mittlerer spezifischer Ertrag in den Potenzialgebieten: 1.133 MWh/ha

PV-Potenzial in den Potenzialgebieten				
Leistung	~ 625 MWp			
Ertrag	~ 708 GWh			

Das PV-Potenzial reicht bilanziell aus, um den **gesamten zusätzlichen EE-Strombedarf** Donauwörths 2040 mit **224 GWh** zu decken

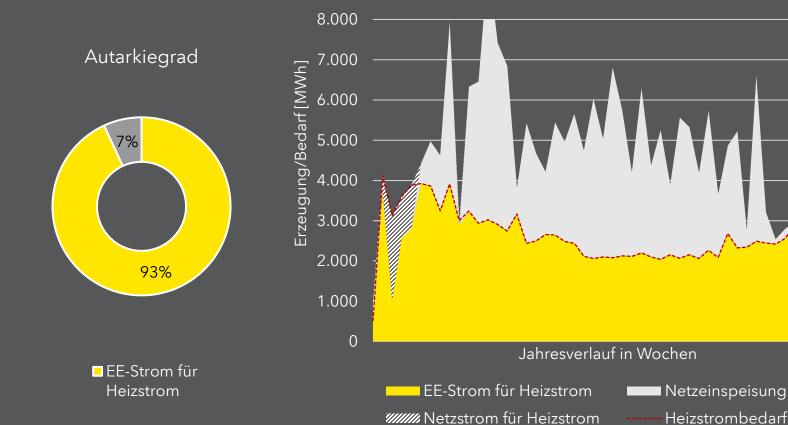
Potenzialgebiete

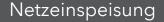
Leitbild

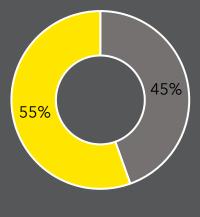

Globalstrahlung in Bayern

Energieatlas Bayern

Lokaler PV-Strom und Heizstrombedarf 2040

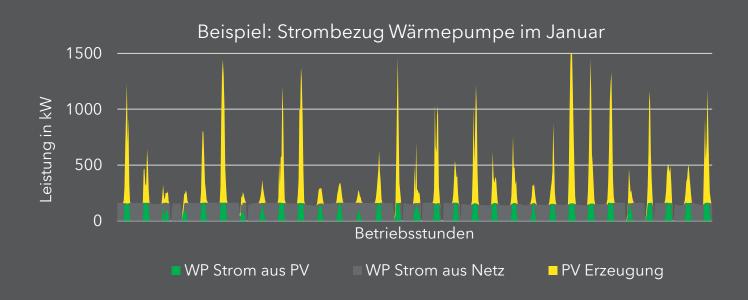


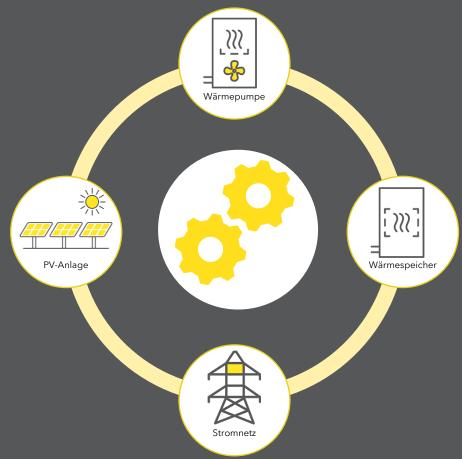

Szenario:


- 100 MWp PV (50% der max. Zielmarke für 2040 gem. Leitbild)
- 146 GWh Heizstrombedarf (50 GWh Gebäudewärme & 96 GWh Prozesswärme)

Lokaler PV- & Windstrom und Heizstrombedarf 2040

- ■Netzeinspeisung
- EE-Strom für Heizstrom


Szenario:


- 65 MW Wind (90% Bebauung des Potenzialgebiets)
- 100 MWp PV (50% der max. Zielmarke für 2040 gem. Leitbild)
- 146 GWh Heizstrombedarf (50 GWh Gebäudewärme & 96 GWh Prozesswärme)

Power to Heat: Sektorenkopplung & Netzstabilisierung

- Wärmeproduktion bei **Stromüberschuss** im Netz
- **Einspeisen**, wenn wenig Strom im Netz vorhanden
- Wärmespeicher deutlich **günstiger** als Stromspeicher
- Lokale Stromerzeugung zur lokalen Wärmeversorgung

2. Konzeptentwicklung: Zusammenfassung

Wind & Photovoltaik bieten günstige Gestehungskosten und hohe Flächeneffizienz im Vergleich zu anderen erneuerbaren Energieträgern

 Durch die Kombination von Wind- und PV können Synergiepotenziale ausgenutzt werden

- → Netzstabilisierung
- → Langfristige Anpassung von Bedarf & Erzeugung
- → Reduzierung des Stromspeicherbedarfs

- Davon Wind: ~5 ha (versiegelt)
 - → entspricht der Erschließung der **Potenzialgebiete**
 - → entspricht ~ 0,06% der Fläche Donauwörths

- → entspricht ~ 1,2% der Fläche Donauwörths
- → innerhalb der Zielmarke gem. Leitbild bis 2030 für dem maximalen Zubau an Freiflächen PV (max. 100 ha)
- Potenzialflächen gemäß Solargutachten (855 ha) insgesamt ausreichend für die bilanzielle erneuerbare Stromversorgung Donauwörths, davon wurden im Leitbild von Donauwörth rund 625 ha zur Ausschreibung kategorisiert.

Ausgangssituation

Pfade zur Klimaneutralität

Status Quo

Strombedarfsprognose

Konzeptentwicklung

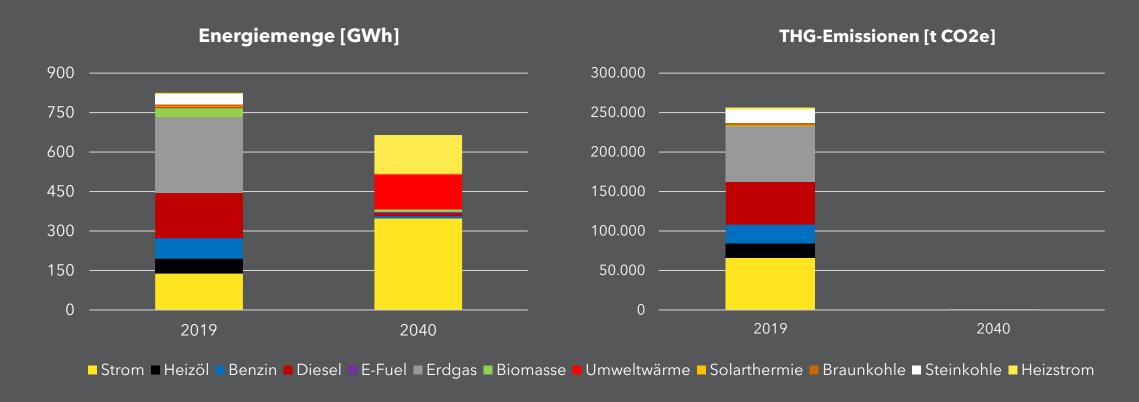
Technologie über sich [,]

Varianten

Zusammenfassung

Zielpfad 2040 Energie- und THG-Bilanzen Handlungsempfehlungen

3. Zielpfad 2040 Integriertes Energiesystem - Donauwörth



^{*}versiegelte Fläche

^{**} Zusätzlicher Bedarf an EE-Strom bis 2024; Gesamtbedarf: 347 GWh/a

3. Zielpfad:

Energie- und THG-Bilanzen

GWh/a Energiebedarf
20% weniger als im
Status Quo

829

tCO₂e/a 99% weniger als im Status Quo

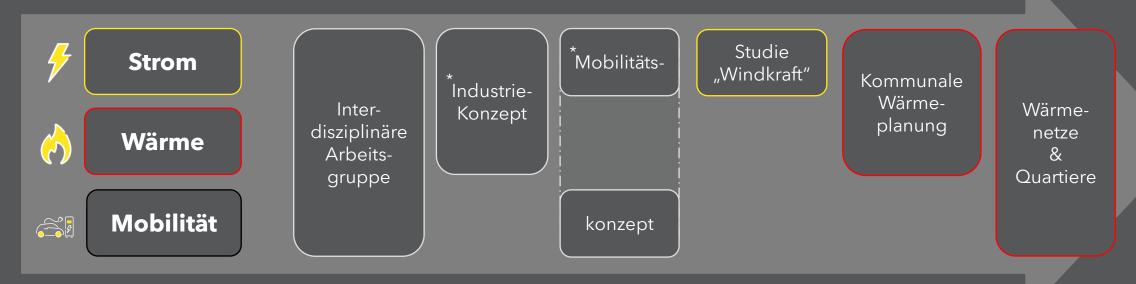
*Annahme:

- Emissionsfaktoren von Strom und E-Fuels entsprechen 0 t CO2e/kWh
- Anteil biologische Treibstoffe konstant

3. Zielpfad: Fokusthemen

Strom

- Erneuerbarer Strom als Basis für die sektorübergreifende Dekarbonisierung
- Synergiepotenziale von Wind
 & Photovoltaik nutzen
- Hohes Potential für Sektorkopplung zu Wärme und Mobilität


Mobilität

- Status Quo: fast vollständig fossile Energieversorgung
- Potenzial: Emissionseinsparungen durch Elektrifizierung
- > Industrie als strategischer Partner für Dekarbonisierung

3. Zielpfad: Handlungsempfehlungen

Integration und Verstetigung von "Klima-Governance" in die kommunale Verwaltung (z.B. Verwaltungsstruktur, Entscheidungsvorlagen, Kampagne, Weiterbildung, Zusammenarbeit mit Kommunen)

*Anwendungsbereiche von Wasserstoff evaluieren

3. Zielpfad:

Das sind die nächsten Schritte

- Gründung von Arbeitsgruppe Politik und Verwaltung + Stakeholder (Industrie vor Ort)
- Veranstaltung von Austausch mit Nachbar-Kommunen
- Organisation von Informations- und Beteiligungskonzept für die Bevölkerung
- ...

Strom

Wärme

Mobilität

- Ausschreibung von Studie für Windkraft und Fokussierung auf Synergien mit PV
- Ausweisung von Potentialflächen in Regionalplanung
- (Ausschreibung von Studie zu Großbatteriespeichern)

- Ausschreibung von Kommunaler Wärmeplanung
- Ausschreibung von BEW-Machbarkeitsstudien für konkrete Wärmenetze

Ausschreibung für Mobilitätskonzept

Ihr Ansprechpartner

Dr. Christian RoßkopfGeschäftsführer
c.rosskopf@gp-joule.de

TRUST YOUR ENERGY

Gestalten Sie mit uns die Energiewende.

